机器学习(ML)从业人员和组织正在建立预训练模型的模型动物园,其中包含元数据描述ML模型和数据集的属性,这些模型和数据集可用于报告,审计,可重复性和解释性目的。Metatada目前尚未标准化;它的表现力是有限的;并且没有可互操作的方法来存储和查询它。因此,阻碍了模型搜索,重用,比较和组成。在本文中,我们倡导标准化的ML模型元数据表示和管理,并提出了一个支持从业者管理和查询元数据的工具包。
translated by 谷歌翻译
为了调节机器学习驱动的系统(ML)系统,当前的审核过程主要集中于检测有害算法偏见。尽管这些策略已被证明具有影响力,但在审计过程中涉及ML驱动系统中伦理的文档中概述的一些价值仍然不足。这种未解决的值主要处理无法轻易量化的上下文因素。在本文中,我们开发了一个基于价值的评估框架,该框架不限于偏见审计,并涵盖了算法系统的重要道德原则。我们的框架提出了值的圆形布置,并具有两个双极尺寸,这些二极管尺寸使共同的动机和潜在的紧张局势明确。为了实现这些高级原则,然后将价值分解为特定的标准及其表现形式。但是,其中一些特定于价值的标准是相互排斥的,需要协商。与仅依靠ML研究人员和从业者的意见的其他一些其他审计框架相反,我们认为有必要包括利益相关者,这些利益相关者表现出各种观点,以系统地谈判和巩固价值和标准紧张局势。为此,我们将利益相关者绘制有不同的见解需求,并为将价值表现传达给他们的量身定制手段。因此,我们通过评估框架为当前的ML审计实践做出了贡献,该实践可视化价值之间的亲密关系和紧张局势,并给出了如何对其进行操作的准则,同时向广泛的利益相关者开放评估和审议过程。
translated by 谷歌翻译
人工智能(AI)越来越多地用于分析各种实践中的大量数据,例如对象识别。我们专门对使用AI驱动的系统来参与当地社区的发展或解决方案,以便按社会和环境问题。这种当地背景往往涉及多个具有不同甚至矛盾议程的利益攸关方,导致对这些系统的行为和所需结果的不匹配期望。需要调查AI模型和管道是否可以通过共同创建和现场部署在不同环境中的预期工作。基于与当地人民共同创建AI动力系统的案例研究,我们解释了需要更多关注的挑战,并为公民需求进行桥梁AI研究提供可行的路径。我们倡导开发在多利益相关者背景下共同创建AI动力系统所需的新协作方法和心态,以解决当地问题。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
Fruit is a key crop in worldwide agriculture feeding millions of people. The standard supply chain of fruit products involves quality checks to guarantee freshness, taste, and, most of all, safety. An important factor that determines fruit quality is its stage of ripening. This is usually manually classified by experts in the field, which makes it a labor-intensive and error-prone process. Thus, there is an arising need for automation in the process of fruit ripeness classification. Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded. Machine learning and deep learning techniques dominate the top-performing methods. Furthermore, deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features, which are often crop-specific. In this survey, we review the latest methods proposed in the literature to automatize fruit ripeness classification, highlighting the most common feature descriptors they operate on.
translated by 谷歌翻译
Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce a class of persistence-based neural network layers. Persistence-based layers allow the users to easily inject knowledge about symmetries (equivariance) respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
translated by 谷歌翻译
In this work we introduce reinforcement learning techniques for solving lexicographic multi-objective problems. These are problems that involve multiple reward signals, and where the goal is to learn a policy that maximises the first reward signal, and subject to this constraint also maximises the second reward signal, and so on. We present a family of both action-value and policy gradient algorithms that can be used to solve such problems, and prove that they converge to policies that are lexicographically optimal. We evaluate the scalability and performance of these algorithms empirically, demonstrating their practical applicability. As a more specific application, we show how our algorithms can be used to impose safety constraints on the behaviour of an agent, and compare their performance in this context with that of other constrained reinforcement learning algorithms.
translated by 谷歌翻译
In contextual linear bandits, the reward function is assumed to be a linear combination of an unknown reward vector and a given embedding of context-arm pairs. In practice, the embedding is often learned at the same time as the reward vector, thus leading to an online representation learning problem. Existing approaches to representation learning in contextual bandits are either very generic (e.g., model-selection techniques or algorithms for learning with arbitrary function classes) or specialized to particular structures (e.g., nested features or representations with certain spectral properties). As a result, the understanding of the cost of representation learning in contextual linear bandit is still limited. In this paper, we take a systematic approach to the problem and provide a comprehensive study through an instance-dependent perspective. We show that representation learning is fundamentally more complex than linear bandits (i.e., learning with a given representation). In particular, learning with a given set of representations is never simpler than learning with the worst realizable representation in the set, while we show cases where it can be arbitrarily harder. We complement this result with an extensive discussion of how it relates to existing literature and we illustrate positive instances where representation learning is as complex as learning with a fixed representation and where sub-logarithmic regret is achievable.
translated by 谷歌翻译
Relation extraction (RE) is a sub-discipline of information extraction (IE) which focuses on the prediction of a relational predicate from a natural-language input unit (such as a sentence, a clause, or even a short paragraph consisting of multiple sentences and/or clauses). Together with named-entity recognition (NER) and disambiguation (NED), RE forms the basis for many advanced IE tasks such as knowledge-base (KB) population and verification. In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE by encoding structured information about the sentences' principal units, such as subjects, objects, verbal phrases, and adverbials, into various forms of vectorized (and hence unstructured) representations of the sentences. Our main conjecture is that the decomposition of long and possibly convoluted sentences into multiple smaller clauses via OpenIE even helps to fine-tune context-sensitive language models such as BERT (and its plethora of variants) for RE. Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models compared to existing RE approaches. Our best results reach 92% and 71% of F1 score for KnowledgeNet and FewRel, respectively, proving the effectiveness of our approach on competitive benchmarks.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译